Установлен новый рекорд скорости передачи данных с помощью излучения терагерцового диапазона

Установлен новый рекорд скорости передачи данных с помощью излучения терагерцового диапазона

Проблема, наблюдающаяся настоящее время в полосе спектра радиодиапазона от 3 до 3000 мегагерц , заключается в том, что эта полоса, мягко говоря, переполнена. Телевидение, радио, мобильная связь, Bluetooth, навигационная система GPS, Wi-Fi и другие устройства двухсторонней радиосвязи используют радиосигналы, находящиеся в этом ультравысокочастотном диапазоне. "Обратной стороной" этой проблемы является то, что даже при всем желании очень трудно найти свободный промежуток в указанном диапазоне, необходимый для организации новых и расширения возможностей существующих служб. Понимая эту проблему, которая со временем будет становиться все острей и острей, исследователи из различных организации уже много лет работают над использованием для связи частот, лежащих вне промежутка от 3 до 3000 МГц. И вот не так давно, одна из групп ученых, работающих в этом направлении, добилась превосходных результатов, получив скорость беспроводной передачи данных порядка 100 гигабит в секунду, используя излучение терагерцового диапазона.

Группа ученых, которой удалось совершить этот прорыв, является группой, в состав которой входят ученые и инженеры из Технологического институте Карлсруэ (Karlsruhe Institute of Technology, KIT), Института прикладной физики Фраунгофера (Fraunhofer Institute for Applied Solid State Physics) и университета Штутгарта (University of Stuttgart). Созданный ими канал в состоянии обеспечить передачу данных с указанной выше скоростью на расстояние немногим более 20 метров с помощью электромагнитного излучения, частотой 237.5 ГГц. Эта частота располагается в миллиметровой части радиоспектра и находится крайне близко к терагерцовой области, которая начинается с точки 300 ГГц. Излучение терагерцового диапазона имеет огромный потенциал благодаря тому, что оно не является ионизирующим, но вместе с этим обладает крайне высоко проникающей способностью, позволяя создавать безопасные для здоровья людей медицинские диагностические устройства и "просвечивающие" системы для служб безопасности аэропортов, других общественных мест и учреждений.

Терагерцовая и субтерагерцовые частоты уже несколько лет рассматриваются как способы реализации быстродействующих коммуникационных каналов, предназначенных для использования в сельской местности или в удаленных месторасположениях, где прокладка волоконно-оптического кабеля затруднена или невозможна. Помимо этого, излучение терагерцового диапазона может обеспечить высокоскоростную связь практически в любых условиях, ведь на его распространение не влияют ни дождь, ни снег, ни туман, которые оказывают существенное негативное влияние на радиоволны некоторых диапазонов и на свет лазеров, используемых в коммуникационных системах, работающих на открытом воздухе.

Для того, чтобы добиться получения рекордного значения скорости передачи информации, исследователи создали устройство, являющееся симбиозом самых современных решений в области электроники и фотоники. Заключительные тракты передающего устройства были изготовлены с помощью фотонных технологий, которые имеют большую полосу пропускания и больший динамический диапазон. А недостатком использования такого подхода было то, что фотонные схемы стали причиной существенного ограничения выходной мощности передающего устройства.

Основой радиопередающего устройства является фотонный чип, выпускаемый японской компанией NTT-NEL и называемый фотонным миксером (photon mixer). На кристалле этого чипа находятся два лазера, освещающие фотодиод. Свет одного из лазеров промодулирован передаваемой информацией, а комбинация света двух лазеров, сложившихся на поверхности фотодиода, позволяет произвести сигнал с частотой 237.5 ГГц, которые затем передается в пространство с помощью антенны, имеющей специальную форму.

На стороне приемника ученые использовали изготовленную на заказ интегральную схему, состоящую из транзисторов с высокой подвижностью электронов и других электронных компонентов, способных работать с излучением миллиметрового диапазона. Схема этого чипа усиливала принятый сигнал и извлекала передаваемую информацию, смешивая усиленный сигнал с сигналом промежуточной частоты. Этот чип, размер кристалла которого равен всего несколько миллиметров, является большим шагом в сторону интеграции террагерцовых коммуникаций в смартфоны, планшетные компьютеры и другие портативные электронные устройства.

Следует заметить, что у группы исследователей из KIT уже имеется достаточно большой опыт в создании подобных систем. В мае этого года им удалось осуществить передачу данных со скоростью 40 гигабит в секунду на дальность более километра с помощью электромагнитного излучения, частотой 240 ГГц. В отличие от схемы нынешнего устройства, схем более раннего передающего устройства была построена только с использованием электронных компонентов. Следующими шагами, которые намерены сделать ученые, станет разработка и применение усилителя, который усилит терагерцовый сигнал, вырабатываемый фотодиодом устройства, что позволит существенно поднять его выходную мощность.

 
 
Оригинал здесь.

Комментарии

Чтобы оставить комментарий, Вам нужно авторизоваться.