Bill Schweber
Electronic Design
Семейство PTC термисторов решает проблемы ошибок калибровки и линейности, связанные с обычными NTC устройствами
Температура является наиболее широко измеряемой физической переменной, и для ее измерения у разработчиков есть много вариантов датчиков, включая термопары, термометры сопротивления, твердотельные сенсоры с токовыми выходами и термисторы – и это лишь часть из того, что приходит на ум. Среди них термисторы с отрицательным температурным коэффициентом (NTC) широко используются для измерения температуры в промышленных, автомобильных, медицинских, контрольно-измерительных и бытовых приложениях из-за их низкой стоимости, широкого диапазона и относительной простоты подключения.
Однако NTC термисторам присущи хорошо известные недостатки. Наряду с большим температурным коэффициентом сопротивления (что, разумеется, хорошо), они имеют сильно нелинейную (хотя и гладкую) зависимость сопротивления от температуры (не хорошо). В результате для их эффективного использования разработчики схем и систем должны реализовать одну или несколько стратегий. Такие методы включают многоточечную калибровку, использование нескольких термисторов с перекрывающимися диапазонами, поисковые таблицы (часто с интерполяцией) или выполнение корректирующих вычислений на основе стандартного уравнения Стейнхарта-Харта (или упрощенной полиномиальной регрессии), моделирующих их передаточную функцию.
Признавая как их привлекательность, так и недостатки, Texas Instruments (TI) представила семейство основанных на кремнии термисторов с положительным температурным коэффициентом (PTC) – комплементарных к NTC устройствам и на 50% более точных. Например, высоколинейный PTC термистор TMP61 имеет номинальное сопротивление 10 кОм при 25 °C при максимальной нелинейности ±1% в интервале от 0 to 70 °C и может работать в диапазоне температур от –40 °C до +125 °C (Рисунок 1).
![]() |
||
Рисунок 1. | Типовая зависимость сопротивления от температуры датчика TMP61 демонстрирует довольно высокую степень линейности. |
Он сохраняет постоянную чувствительность во всем диапазоне температур с температурным коэффициентом сопротивления (TCR) 6400 ppm/°C при 25 °C и типовым допустимым отклонением TCR, равным 0.2% во всем рабочем диапазоне. Его аналог TMP63 имеет номинальное сопротивление 100 кОм при 25 °C, тогда как сопротивление TMP64 равно 47 кОм. По сравнению с NTC-устройствами, термисторы требуют минимальных аппаратных или программных средств линеаризации или не нуждаются в них вовсе, калибруются только в одной точке, имеют меньший разброс отклонений сопротивления и обеспечивают лучшую чувствительность при высоких температурах.
TI утверждает, что, исключая необходимость в схемах линеаризации или в дополнительных NTC термисторах, эти PTC термисторы упрощают конструкцию, снижают стоимость системы и сокращают требуемую площадь печатной платы, как минимум, на 33% по сравнению с термисторами NTC.
Как и для всех устройств, особенно датчиков температуры, часто работающих в агрессивных средах, существует вероятность отказа PTC термистора. Термисторы могут работать от источника напряжения или тока (Рисунок 2), и, хотя у каждого подхода к питанию есть свои плюсы и минусы, в обоих случаях короткое замыкание может иметь неприятные последствия для всей системы. По этой причине устройства TI имеют встроенную «защиту от отказов» на случай короткого замыкания.
![]() |
||
Рисунок 2. | Для питания резистивного элемента – термистора – может использоваться источник напряжения (слева) или источник тока (справа). На практике в большинстве схем, управляемых напряжением, используют логометрический метод измерения, чтобы нейтрализовать влияние дрейфа источника. |
Конечно, большое значение при измерениях температуры имеют физические размеры датчиков, поскольку тепловая масса влияет как на время отклика, так и на возможность размещения датчика в нужном месте. TMP61 выпускаются в корпусах нескольких типов, в том числе, в корпусе размером 0.60 × 1.00 мм (совместимом с 0402), в TO-92S (4.00 × 3.15 мм) и в SOT-5X3 (0.80 × 1.20 мм). TMP63 поставляется в корпусе размером 0.60 × 1.00 мм, а также в других корпусах TMP. Кроме того, 10-килоомные термисторы TMP61 и 100-килоомные TPM63 выпускаются в версиях для использования в схемах автомобильной электроники. Цена одного термистора в партиях из 1000 устройств начинается от $0.05.
![]() |
||
Рисунок 3. | Оценочный набор TMP6EVM для термисторов семейства TMP61 поддерживается подробным руководством и графическим интерфейсом пользователя для ПК с ОС Windows. |
Для тестирования приборов и оценки их возможностей TI предлагает оценочный набор TMP6EVM, источником питания которого может служить напряжение 5 В интерфейса USB или батарейка CR2032 (Рисунок 3). Этот автономный модуль содержит выпускаемый компанией цифровой датчик TMP116, используемый в качестве локального эталона температуры, а также два аналоговых канала. Секция датчика может быть отделена от основной платы для эмуляции системы, в которой датчик удален от хост-контроллера (обычная ситуация), в то время как на ЖК-дисплее в реальном времени отображаются потоковые данные измерений температуры с частотой обновления 2 Гц.
Материалы по теме
- Datasheet Texas Instruments TMP116
- Datasheet Texas Instruments TMP61
- Datasheet Texas Instruments TMP63
- Datasheet Texas Instruments TMP64
Комментарии
Чтобы оставить комментарий, Вам нужно авторизоваться.